Introducing the potential of rjd3sts

Workshop on Time Series Analysis and Statistical Disclosure Control Methods for Official Statistics

December 14-15, 2023

Corentin Lemasson | OECD Paris

Outline

- 1. rjd3sts in a nutshell
- 2. State Space Framework
- Added value of *rjd3sts* compared with other JDemetra+ tools
- 4. Case studies
 - Seasonal adjustment of series that have changed frequency
 - Mixed-frequency imputation tool
- 5. Links

rjd3sts in a nutshell

- R package of JDemetra+ v3 dedicated to Structural models and State Space models
- Main features
 - Rich State Space tool
 - Large collection of blocks, uni/multivariate, bunch of output...
 - High-performance
 - Interface to JAVA libraries (JDemetra + v3)
 - Fast processing: functional forms instead of matrix computations
 - Parameters estimated by ML through specialized optimization procedures
 - Easy to use
 - Step-by-step approach and few technical details in R

State Space Framework

- A **unified approach** to a wide number of problems in time series
- Consists of the construction of dynamic models, with **Markovian process**
 - > i.e., state in T+1 only dependent on the state in T
 - Cover traditional models and allows us to go further
- **Blocks**-based approach
 - Complex models can thus be simply built

State Space Framework (2)

State composed of independent blocks

$$\begin{bmatrix} \alpha_{1,t+1} \\ \alpha_{2,t+1} \\ \vdots \\ \alpha_{q,t+1} \end{bmatrix} = \begin{bmatrix} T_{1,t} & 0 & \cdots & 0 \\ 0 & T_{2,t} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & T_{q,t} \end{bmatrix} \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \\ \vdots \\ \alpha_{q,t} \end{bmatrix} + \mu_t, \qquad \mu_t \sim N(0, \begin{bmatrix} \Omega_{1,t} & 0 & \cdots & 0 \\ 0 & \Omega_{2,t} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & \Omega_{q,t} \end{bmatrix})$$

Measurement equation links the state to the (multivariate) observations

$$y_{i,t} = \begin{bmatrix} Z_{1,i,t} & Z_{2,i,t} & \cdots & Z_{q,i,t} \end{bmatrix} \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \\ \vdots \\ \alpha_{q,t} \end{bmatrix} + \varepsilon_{i,t},$$

Current catalog of rjd3sts

- "Atomic" blocks with automatic (diffuse) initialization and dynamics
 - ARIMA, local level/linear trend, seasonal components, (time varying) regression coefficients, VAR...
- **Derived blocks**
 - Aggregation of the atomic blocks, cumulator (handling of mixed frequencies)
- Large collection of default or specific measurement blocks
 - Selectors, regression variables...

Added value of rjd3sts compared with other JDemetra+ tools

- > Allow to solve many problems in time series, including things that cannot be done with other tools
- Examples (see https://github.com/rjdemetra/rjd3sts/wiki)
 - Mixed frequency \rightarrow e.g. see following case studies
 - Time varying-coefficient (e.g. in calendar effect)
 - Break in some components of the series, but not in the others (e.g. seasonal break, while the trend is preserved)
 - Heteroskedasticity (e.g. during Covid time)
 - Adding constraints (e.g. fixing values at some periods of time)
 - Estimate of the precision of the various components
- Suggestion: use *rjd3sts* instead of traditional tools for problematic cases

Case studies

- Mixed frequency cases
 - Seasonal adjustment of series that have changed frequency
 - 2. Mixed-frequency imputation tool
- Both requires the use of a "cumulator1" block

Initial state block state transition loading

Derived state block

$$M^{c} = \begin{cases} \tilde{\alpha}_{t} = \left(\sum_{j=t0}^{t-1} (Z_{j}\alpha_{j})\right) \\ \tilde{\alpha}_{t} \end{cases}$$

$$\tilde{T}_{t} = \begin{pmatrix} 1 & Z_{t} \\ 0 & T_{t} \end{pmatrix}$$

$$\tilde{Z}_{t} = \begin{pmatrix} 1 & Z_{t} \\ \cdots \end{pmatrix}$$

$$\cdots$$

¹Proietti (2005): Temporal Disaggregation by State Space Methods: Dynamic Regression Methods Revisited

1. Seasonal adjustment of series that have changed frequency

Bookstores retail series

Input

•				
		Monthly part of the series	Quarterly part of the series	Cumulated series by quarter
	01/01/1992			790
	01/02/1992			1330
	01/03/1992			1866
	01/04/1992	524		524
	01/05/1992	553	NA	1077
	01/06/1992	589		1666
	01/10/2005	1064		1064
	01/11/2005	1150	NA	2214
	01/12/2005	2256		4470
	01/01/2006	NA		NA
	01/02/2006	NA	4418	NA
	01/03/2006	NA		4418
	01/04/2006	01/04/2006 NA		NA
	01/05/2006	NA	3401	NA
	01/06/2006	NA		3401
	01/10/2010	NA		NA
	01/11/2010	NA	3961	NA
	01/12/2010	NA		3961

R Code

```
library(rjd3toolkit)
library(rjd3sts)
# Import and format input (sc)
# Define your calendar regressors using functions from rjd3toolkit
# Set up the model (state)
bsm<-model()
# Define components, i.e. the 'atomic' blocks
trend<-locallineartrend("trend")
seas<-seasonal("seas", frequency(s), type="HarrisonStevens")</pre>
cal<-reg("regcal", regcal)
noise<-noise("noise")
# Aggregate the components and derive the cumulator block
all<-aggregation("m", list(trend, seas, cal, noise))
c<-cumul("c", all, period = frequency(sm)/frequency(sq))</pre>
# Add the derived cumulator to the state
add(bsm, c)
# In the last version of rjd3sts, the measurement equation is built
# automatically with default loadings when not defined like here
# Estimate the model
rslt<-estimate(model=bsm, data=sc)
```

Output

> dictionary(rslt)

[:	.] "likelihood.ll"	"likelihood.ser"	"likelihood.residuals"	"scalingfactor"	"ssf.ncmps"
[i] "ssf.cmppos"	"ssf.cmpnames"	"parameters"	"parametersnames"	"fn.parameters"
[1:] "ssf.T(*)"	"ssf. v(*)"	"ssf.Z(*)"	"ssf.P0"	"ssf.B0"
[1	[3] "ssf.smoothing.array(?)"	"ssf.smoothing.varray(?)"	"ssf.smoothing.cmp(?)"	"ssf.smoothing.vcmp(?)"	"ssf.smoothing.state(?)"
[2:] "ssf.smoothing.vstate(?)"	"ssf.smoothing.states"	"ssf.smoothing.vstates"	"ssf.filtering.array(?)"	"ssf.filtering.varray(?)
[2	[] "ssf.filtering.cmp(?)"	"ssf.filtering.vcmp(?)"	"ssf.filtering.state(?)"	"ssf.filtering.states"	"ssf.filtering.vstates"
[3:] "ssf.filtering.vstate(?)"	"ssf.filtered.array(?)"	"ssf.filtered.varray(?)"	"ssf.filtered.cmp(?)"	"ssf.filtered.vcmp(?)"
[3	[] "ssf.filtered.state(?)"	"ssf.filtered.vstate(?)"	"ssf.filtered.states"	"ssf.filtered.vstates"	

> result(rslt, "ssf.smoothing.states")

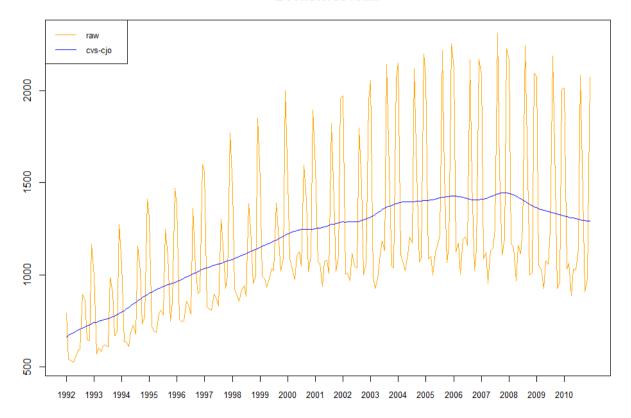
	[,1]	[,2]	[,3]	[,4] [,5]	[,13]	[,14]	[,15]	[,16]	[,20] [,21]	[,22]
[1,]	0.0	661.9	6.1	106.1	461.1	-179.5	-97.9	8.0	-15.6	-2.3	34.0	-9.74E-09
[2,]	790.0	669.7	6.1	-127.4	120.0	-131.8	-180.7	8.0	-15.6	-2.3	34.0	2.50E-09
[3,]	1330.0	677.1	6.1	-100.1	-132.3	-99.5	-132.7	8.0	-15.6	-2.3	34.0	2.07E-09
- /-	1330.0	0//.1	0.1	100.1	132.3	33.3	132.7	0.0	13.0	2.5	34.0	2.07 L 03

> regcal

ľ	Mon 7	آue ۱	Wed -	Thu	Fri :	Sat	easter
Jan-92	0	0	0	1	1	0	0
Feb-92	0	0	0	0	0	1	0
Mar-92	0.40636	0.20318	-0.7968	-0.7968	-0.7968	-0.7968	-0.5

→ Series

[,2]+[,22] sa [,2]+[,4]+sumproduct([,15]:[,21],regcal)+[,22] raw


> result(rslt, "ssf.smoothing.vstates")

R Code

```
ss<-result(rslt, "ssf.smoothing.states")</pre>
s_raw<-ss[,2]+ss[,4]+rowSums(ss[,15:21]*regcal)+ss[,22]
s_sa<-ss[,2]+ss[,22] # sa = trend + noise
plot(s_raw, type='l', xaxt="n", col='orange', ylab="", xlab="", main="BookStores retail")
lines(s_sa, col='blue')
axis(1, seq(1,length(s),12), 1992:2010, cex.axis = .8)
legend("topleft", legend=c("raw", "cvs-cjo"),col=c("orange", "blue"), lty=1, cex=0.8)
```

BookStores retail

2. Mixed-frequency imputation tool

- Context
 - Quarterly estimates of government accounts suffer from inconsistencies and delays in the delivery of source data
 - However, fairly accurate estimate from the annual budget is available for the current year
 - Question: how to use this information to improve the estimates of the missing quarters?
- Solution
 - Use of a structural model with cumulator
- Potential difficulties for the end user
 - What model?, outliers?, calendar effects? what's in my state? How to extract the results I need?...
 - → Add an extra layer: e.g. package R *nbbSTSestimate* (see https://github.com/clemasso/nbbSTSestimate)

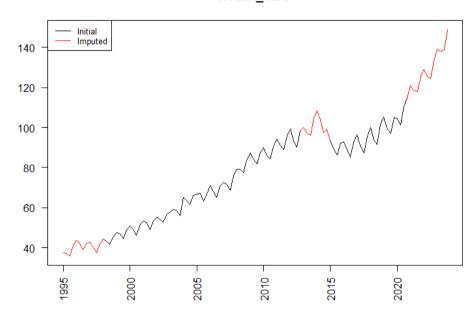
nbbSTSestimate

- Current features
 - Allow monthly, quarterly or annual data with or without low-frequency input
 - Single or multi-processing
 - Common structural models are included with the possibility to add outliers and calendar effects
 - Automatic modelling/detection
 - Input checks
 - Output quite rich

R Code

```
library(nbbSTSestimate)
# Import input (sq and sy)
rslt<-estimateSTS(sq, sy, stsmodel="auto", outliers="auto", cal.effect="auto", cal.effect.td = "BE")
# or rslt<-estimateSTS_fromXLSX("input.xlsx", is.lf = TRUE)</pre>
rslt$series$table
rslt$series$regressors$param
plot(rslt)
#...
```

> rslt\$health_care\$table


		Series	Trend	Slope	Seasonal	Irregular
1995	Q1	37.61112	35.57290	1.69473339	2.06165700	-0.023441002
1995	Q2	37.31840	37.26764	1.63944944	0.07420632	-0.023441002
1995	Q3	35.98202	38.90709	1.47359762	-2.90162637	-0.023441002
1995	Q4	41.11999	40.38068	1.14189397	0.76275038	-0.023441002
1996	Q1	43.65863	41.52258	0.58905455	2.06366544	0.072384698
1996	Q2	42.26028	42.11163	-0.01420645	0.07625893	0.072384698
1996	Q3	39.27024	42.09743	-0.49717486	-2.89957376	0.072384698
1996	Q4	42.44159	41.60025	-0.68913648	0.76895236	0.072384698
1997	Q1	42.87910	40.91111	-0.41937714	2.05746346	-0.089473225
1997	Q2	40.47506	40.49174	0.10108690	0.07279190	-0.089473225
1997	Q3	37.60031	40.59282	0.66123937	-2.90304079	-0.089473225
1997	Q4	41.92588	41.25406	1.05006402	0.76128622	-0.089473225
1998	Q1	44.48696	42.30413	1.05654457	2.06512960	0.117700748
1998	Q2	43.39747	43.36067	0.95826990	0.07722961	-0.040431526
1998	Q3	41.66977	44.31894	0.65988513	-2.90199031	0.252820327
1998	Q4	45.61177	44.97883	0.75764908	0.77426521	-0.141322368
1999	Q1	47.64686	45.73648	0.91826296	2.03933488	-0.128948783

> rslt\$health_care\$regressors\$param

AO.36 LS.103 -6.946467 11.588629

health_care

Links to packages

- rjd3sts: https://github.com/rjdemetra/rjd3sts
- nbbSTSestimate: https://github.com/clemasso/nbbSTSestimate

